Sign in to confirm you’re not a bot
This helps protect our community. Learn more
Computer Mathematics 2019 / Lecture 10, Part 1: The Chinese Remainder Algorithm
0Likes
119Views
2019Jun 25
The Chinese Remainder Algorithm (in Japanese). Note that question answering session has been closed. Please leave your questions or comments on YouTube page. Course information (in Japanese): https://www.math.tsukuba.ac.jp/~terui... Akira Terui. College of Mathematics, University of Tsukuba, Tsukuba, Japan.

Follow along using the transcript.

easyarithmetican / atelier aterui

7.3K subscribers

計算機数学I (2019)

1

Computer Mathematics 2019 / Lecture 1, Part 1: Components of a computer system

easyarithmetican / atelier aterui
2

Computer Mathematics 2019 / Lecture 1, Part 2: Inside of a computer

easyarithmetican / atelier aterui
3

Computer Mathematics 2019 / Lecture 1, Part 3: Computer memory

easyarithmetican / atelier aterui
4

Computer Mathematics 2019 / Lecture 2, Part 1: Expression of integers and two's complement

easyarithmetican / atelier aterui
5

Computer Mathematics I (2019) / Lecture 2, Part 2: Floating-point numbers

easyarithmetican / atelier aterui
6

Computer Mathematics I (2019) / Lecture 2, Part 3: Rounding error and machine epsilon

easyarithmetican / atelier aterui
7

Computer Mathematics 2019 / Lecture 3, Part 1: Expression of multi-precision integers

easyarithmetican / atelier aterui
8

Computer Mathematics 2019 / Lecture 3, Part 2: Addition of multiple-precision integers

easyarithmetican / atelier aterui
9

Computer Mathematics 2019 / Lecture 3, Part 3: Expression of algorithm

easyarithmetican / atelier aterui
10

Computer Mathematics 2019 / Lecture 3, Part 4: Algorithm for addition of multiple-precision integers

easyarithmetican / atelier aterui
11

Computer Mathematics 2019 / Lecture 4, Part 1: Computational complexity and asymptotic notation

easyarithmetican / atelier aterui
12

Computer Mathematics 2019 / Lecture 4, Part 2: Complexity of addition of multi-precision integers

easyarithmetican / atelier aterui
13

Computer Mathematics 2019 / Lecture 4, Part 3: Addition of univariate polynomials

easyarithmetican / atelier aterui
14

Computer Mathematics 2019 / Lecture 5, Part 1: The Horner's rule

easyarithmetican / atelier aterui
15

Computer Mathematics 2019 / Lecture 5, Part 2: Binary-Decimal conversion of nonnegative integers

easyarithmetican / atelier aterui
16

Computer Mathematics 2019 / Lecture 5, Part 3: Binary-Decimal conversion of decimals

easyarithmetican / atelier aterui
17

Computer Mathematics 2019 / Lecture 5, Part 4: Binary-Decimal conversion: an example

easyarithmetican / atelier aterui
18

Computer Mathematics 2019 / Lecture 6, Part 1: Multiplication of univariate polynomials

easyarithmetican / atelier aterui
19

Computer Mathematics 2019 / Lecture 6, Part 2: Multiplication of multi-precision integers

easyarithmetican / atelier aterui
20

Computer Mathematics 2019 / Lecture 6, Part 3: Division with remainder

easyarithmetican / atelier aterui
21

Computer Mathematics 2019 / Lecture 7, Part 1: Euclidean domain

easyarithmetican / atelier aterui
22

Computer Mathematics 2019 / Lecture 7, Part 2: The Euclidean algorithm

easyarithmetican / atelier aterui
23

Computer Mathematics 2019 / Lecture 7, Part 3: The Extended Euclidean algorithm

easyarithmetican / atelier aterui
24

Computer Mathematics 2019 / Lecture 8, Part 1: Property of the Extended Euclidean algorithm

easyarithmetican / atelier aterui
25

Computer Mathematics 2019 / Lecture 8, Part 2: Calculating modular inverse

easyarithmetican / atelier aterui
26

Computer Mathematics 2019 / Lecture 9, Part 1: Property of the Extended Euclidean algorithm (2)

easyarithmetican / atelier aterui
27

Computer Mathematics 2019 / Lecture 9, Part 2: Continued fraction expansions of rational numbers

easyarithmetican / atelier aterui
28

Computer Mathematics 2019 / Lecture 9, Part 3: Continued fraction approximation

easyarithmetican / atelier aterui

Computer Mathematics 2019 / Lecture 10, Part 1: The Chinese Remainder Algorithm

easyarithmetican / atelier aterui
30

Computer Mathematics 2019 / Lecture 10, Part 2: The Chinese Remainder Algorithm: an example

easyarithmetican / atelier aterui
31

Computer Mathematics 2019 / Lecture 11, Part 1: Rational reconstruction

easyarithmetican / atelier aterui
32

Computer Mathematics 2019 / Lecture 11, Part 2: Recovering fractions from the decimal expansions

easyarithmetican / atelier aterui
33

Computer Mathematics 2019 / Lecture 12, Part 1: Time complexity of matrix multiplications

easyarithmetican / atelier aterui
34

Computer Mathematics 2019 / Lecture 12, Part 2: Matrix multiplications with Modular algorithm

easyarithmetican / atelier aterui
35

Computer Mathematics 2019 / Lecture 12, Part 3: Time complexity of modular matrix multiplications

easyarithmetican / atelier aterui
36

Computer Mathematics 2019 / Lecture 13, Part 1: Time complexity for division of polynomials

easyarithmetican / atelier aterui
37

Computer Mathematics 2019 / Lecture 13, Part 2: Time complexity for division of integers

easyarithmetican / atelier aterui
38

Computer Mathematics 2019 / Lecture 13, Part 3: Time complexity for the Chinese Remainder Algorithm

easyarithmetican / atelier aterui
39

Computer Mathematics 2019 / Lecture 14, Part 1: Karatsuba's multiplication algorithm for integers

easyarithmetican / atelier aterui
40

Computer Mathematics 2019 / Lecture 14, Part 2: Time complexity of Karatsuba's algorithm

easyarithmetican / atelier aterui
41

Computer Mathematics 2019 / Lecture 14, Part 3: Karatsuba's algorithm for univariate polynomials

easyarithmetican / atelier aterui
42

Computer Mathematics 2019 / Lecture 15, Part 1: Evaluation and interpolation of polynomials

easyarithmetican / atelier aterui
43

Computer Mathematics 2019 / Lecture 15, Part 2: Fast Fourier Transformation (FFT) Algorithm

easyarithmetican / atelier aterui
44

Computer Mathematics 2019 / Lecture 15, Part 3: Examples and time complexity of the FFT algorithm

easyarithmetican / atelier aterui
45

Computer Mathematics 2019 / Lecture 15, Part 5: Fast multiplication of polynomials using the FFT

easyarithmetican / atelier aterui